AN EVALUATION OF EARTH AND PLANETARY SCIENCE REPOSITORIES IN DOAR

Mr. Ambhore Sagar Pandit

Research Student

Dept .of Library & Information Science

Dr. Babasaheb Ambedkar Marathwada

University, Aurangabad. (MS)

India

Dr. Khaparde Vaishali

Professor and Head
Dept .of Library & Information Science
Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad. (MS)
India

ABSTRACT

The paper provides detailed picture of repositories under Earth and Planetary Science (EP Sci.) category available in Directory of Open Access Repositories (DOAR). In this study EP SCI. repositories EP SCI. ted in Directory of Open Access Repositories (DOAR) are analyzed for number of items archived so far, software used, type of material archived in these repositories etc. Out of 75 repositories Earth and Planetary Science in DOAR. The study discloses the leading countries with repositories providing EP SCI. content and also highly used software used in these repositories.

KEYWORDS: Earth and Planetary Science, EP SCI. repository software, Directory of Open Access Repositories, DOAR.

INTRODUCTION

The World Wide Web (WWW or Web) is the most remarkable and magnificent service of the Internet, and can be regarded as one of the most innovative services of the 21st century (Singh and Gill, 2013). The web is widely embraced by academia and library professionals and is recognized as a great information delivery system. Repositories are digital collections that capture and preserve the intellectual output of a single or multi-university community. Their aim is to provide access to scholarly material without the economic barriers that currently exist in scholarly pub EP SCI. hing (Shearer, 2003).

Repositories fulfill following main functions:

- ➤ They contain a wide range of materials, including preprints, working papers, pub EP SCI. hed articles, enduring teaching materials, theses, data-sets, etc. these fulfill the needs of different educational communities.
- They are cumulative and perpetual, and thus act as archives. Material is not deleted after a certain amount of time, but is built upon and always available. The institutional repository model provides a means for institutions to create archives and make available their wealth of knowledge. It allows scientists and researchers to self-archive their own material.
- Most iEP Sci.ortantly, they are inter-operable and are open access. This gives wider chances of accessibility to the material.
- There are many software packages that enable people to set up repositories and to encourage authors to self-archive. These include the E-prints software from SouthaEP Sci.ton; the D-Space software from Massachusetts Institute of Technology (MIT) (Prosser, 2003).

REVIEW OF LITERATURE

Penfield (2005) gives stress on deposition of research papers in open access institutional repositories. He stresses that institutional repositories could certainly create major I EP Sci. movements in scholarly communication in a short time if they held a large proportion of the research literature.

According to Ware (2004), institutional repositories (IRs) emerged during the second half of 2002. The main reason for this is the launch of DSpace at MIT. This has become a new strategy within universities for accelerating changes in electronic scholarly communication.

Maqbool (2011) carried out a study of DOAR and Registry of Open Access Repositories in which the author selected the repositories existing in SAARC countries. The study reveals that majority of repositories in the region especially India (31) use DSpace followed by 2 in Bangladesh and 1 in Nepal, while Eprints turns out to be the second popular software used by 13 repositories in India and one in Pakistan.

Westrienen and Lynch (2005) report about data on institutional repositories from thirteen nations: Australia, Canada, the United States and ten European countries – Belgium, France, the United Kingdom, Denmark, Norway, Sweden, Finland, Germany, Italy and the Netherlands. They studied number of repositories in each country and number of objects in these repositories. The also focused on the type of material archived and software used in these repositories. Further, they reported about the disciplinary coverage in these repositories and interoperability features of these repositories.

According to Chan (2004), scholarly communication and pub EP SCI. hing are increasingly taking place in the electronic environment. With a growing proportion of the scholarly record now existing only in digital format, serious and pressing issues regarding access and preservation are being raised that are central to future scholarship. At the same time, the desire of scholars to maximize readership of their research and to take control of the scholarly communication process back from the restrictive domain of commercial publishing EP SCI. has proEP Sci.ted the proliferation of access options and experimental models of pub EP SCI. hing. This paper examines the emerging trend of www.klibjlis.com

university-based institutional repositories (IRs) designed to capture the scholarly output of an institution and to maximize the research iEP Sci.act of this output.

OBJECTIVE

- 1. To disclose the content of repositories along with the number of items archived in repositories EP SCI. ted under EP SCI. category.
- 2. To reveal the leading software used in these repositories and archival policy adopted by these repositories as base URL (Uniform Resource Locator).

METHODOLOGY:-

In order to collect data, a survey of repositories EP SCL ted in DOAR (Directory of Open Access Repositories) as on December, 2014 was carried out. All the 75 repositories EP SCL ted under Earth and Planetary Science were searched one by one for all the features and analyzed accordingly.

Managing the multi-lingual repositories:

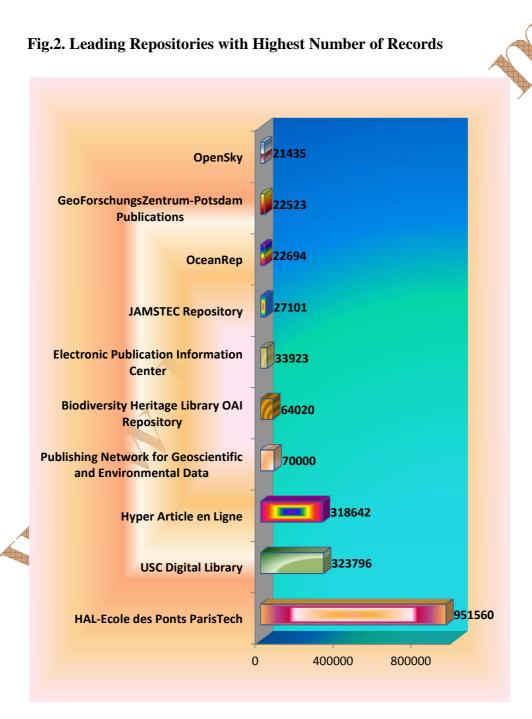
The feature of Google Chrome browser to translate a webpage into Eng EP SCI. h was used to solve the problem of multi-lingual repositories.

SCOPE:

The scope of the study was confined to repositories EP SCI. ted in DOAR under the category of Earth and Planetary Science.

FINDINGS AND DISCUSSION:-

Leading Countries with Repositories Containing EP SCI. Content

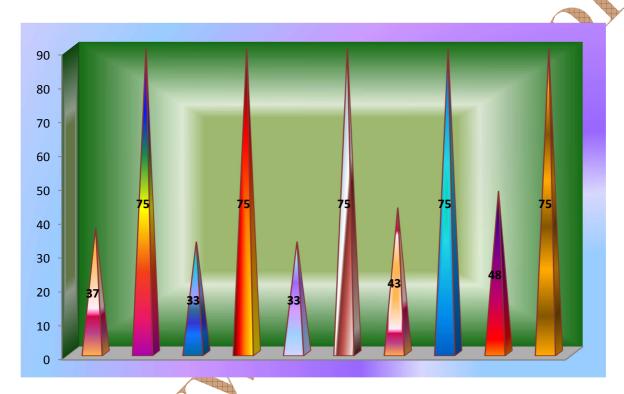

It is observed that a significant number of repositories (75) are EP SCI. ted in DOAR (Directory of Open Access Repositories) under Social Sciences Generals heading. Out of these 75 repositories, 75 repositories are functional while as 4 repositories are found to be non-functional. These 75 repositories are shared by 27 countries. United States (US) is the leading country with maximum number of functional repositories (18) The country with the 2nd highest number of repositories (07), all of which are functional, is United Kingdom (UK) followed by at 3rd spot with 2 repositories which are operational. Peru, Belgium, with 4 repositories is occupying 4th spot followed by France, India, Italy, and Malaysia at 5th position with 5 repositories each. This can be seen from Fig.1.

18 18 16 14 12 10 8 6 4 2 Salvador Netherlands **Rederation** Saudi Arabia Sermany South Africa Tanzania United Kingdom **United States** Venezuela

Fig.1. Leading Countries with Repositories.

Leading Repositories in Terms of Records

Analysis of data revealed a sizeable amount of records (9,51,560) available in these repositories under EP SCI. category. repository HAL-Ecole des Ponts ParisTech tops the list with highest number (32,3,796) of records available followed by another repository USC Digital Library at 2nd spot with (31,8,642) records. And another repositories e.i. respectively. This is from Fig.2.



www.klibjlis.com Page | 46

Type of Records Available in Repositories

It is clear that there are 4 different types of records available in repositories, viz. Conference Theses, Published and Unpublished records. There are 33 repositories out of 75 working repositories providing access to Published records, 43 repositories giving access to Unpublished records and an equal number of repositories (70) possessing Conference and Theses in their archives. There are 48 repositories which possess Other types of records. This can be seen from Fig.3.

Fig.3. Type of Materials Available in Repositories

Confs	Total R	These	Total R	Pubs	Total R	Unpub	Total R	Other
37	75	33	75	33	75	43	75	48

Base Url Used By Repositories

It is noted that most of the repositories are making use of OAI (Open Archives Initiative) as base URL (Uniform Resource Locator) under EP SCI. category. Out of 75 working repositories, 47 are using OAI while as 28 repositories are making use of some other standards which are unknown. This is shown in Fig. 4.

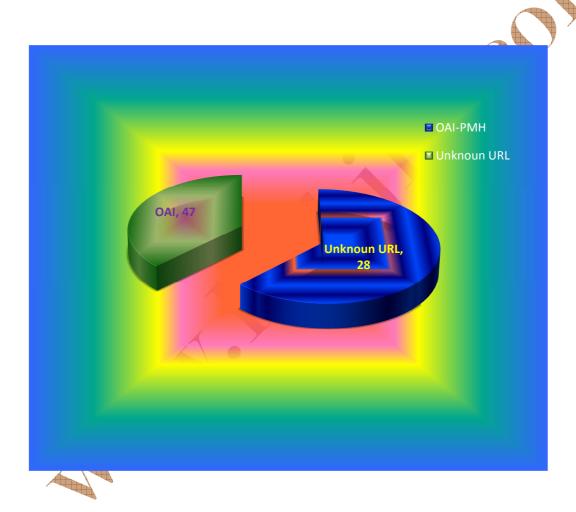


Fig.4. Use of OAI as Base URL by Repositories

Software Used By Repositories

The study reveals that a variety of digital library software being used by repositories out of which 18 are well-known. The premier software used by maximum (24) number of repositories is DSpace followed by EPrints at 2nd place with 16 repositories making use of it. There are 14 repositories making use of Unknown software which occupies the 3rd spot followed by Hal at 4th spot with 05 repositories using the Digital Commons software. 5th spot with 10 repositories using the software 6th position is shared by Contentdm, CWIS, DARE, Drupal, eDoc, e-repository, Fedor, InfoLib-DBR, panFMP, Socionet, software each being used by 1 repositories. Fig.5- provides a lucid view.

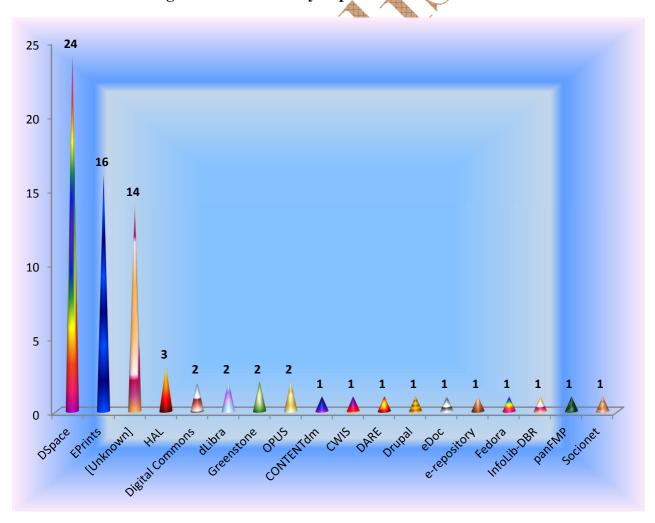


Fig.5. Software Used By Repositories

Links to Other Websites

Fig.6 clearly depicts that 47 repositories out of 75 repositories are providing links to other related useful websites.

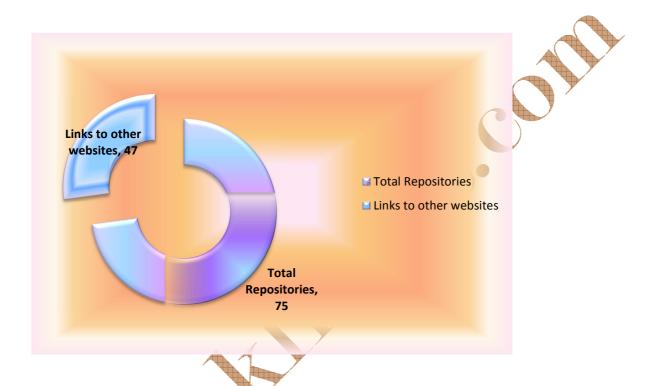


Fig.6. Repositories Providing Links to Other Websites

CONCLUSION AND SUGGESTION

It is clear from the study that there is dire need in developing world to adopt the latest technology and come up with more and more repositories in different fields of knowledge. These repositories then need to be maintained and content should be added to them continuously to make research public. Open Archive Initiative needs to be adopted by more and more repositories to make repositories interoperable. More links to other useful websites which can fulfill the information needs of the users should be incorporated in these repositories.

REFERENCES

- Khaparde V. S. E-journals in library and information science: A Bibliometric study.International journal of Humanities and Social Sciences.2011, Vol. 1(11), Center for promoting Ideas, USA.
- Khaparde V. S. Pattern of information use by researchers in library and Information Science.International Journal of Humanities and Social Sciences, 2011, Vol. 1(12) Center for promoting Ideas, USA.
- Khaparde V. S. Use of Information by Library Science Professionals: A Bibliometric Study. British
 Journal of Humanities and Social Sciences. Vol. 1(2) October, 2011, London, United Kingdom, 7875 ISSN 2048-1268.
- Khaparde V. S. (2011). Use of Internet by Research Scholars of Social Science Departments of
 Dr.Babasaheb Ambedkar Marathwada University, Aurangabad. International Journal of Humanities
 and Social Sciences. Vol. 1(10) August 2011, Center for promoting Ideas, USA.
- Khaparde V. S. Bibliometric study of Electronic Journal of Academic and special Librarianship.
 British Journal of Humanities and Social Sciences. Vol. 1(2) October, 2011, London, United Kingdom, 33-43 ISSN 2048-1268.
- Khaparde V. S. Information Usage of Biological Science Researchers of Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. International Library Movement, Vol.33 (2) June, 2011, Holy TeEP Sci.le Library, Ambala, 64-71. ISSN 0970-0048.
- Khaparde V. S. Digital Libraries in Knowledge Management and Status of Librarians In International Journal of Software Engineering and Technology, Vol. 3(3), March 2011, 124-128.
 ISSN: 0974-973X (P) Online 0974- 9624.
- Khaparde V. S. Knowledge Management and Library and Information Science Professionals.
 International Journal of Artificial Intelligent Systems and Machine Learning, March 2011.